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fj:f 1. INTRODUCTION
:jhf In the earlier paper by the authors, Kotz and Shanbhag (1980) (to
e be referred to as KSh for brevity) presented a detailed discussion of
,;;: new approaches to univariate probability distributions. We concentrated
5;: on representations and characterizations of probability distribution
i} functions in terms of conditional expectations (specifically in terms of
Eg the expected remaining life function - e.r.l. function) and in terms of
'“: hazard measures.
b In the course of our investigations, we succeeded in extending,
;;%‘ generalizing and simplifying a number of results dealing with e.r.1.
::%: functions and hazard measures which have appeared in the literature of
fij: the last two decades. We also presented some convergence theorems which
~E§? shed 1ight on the structure of e.r.1, functions, hazard measures and
(2:% distribution functions in both the continuous and discrete cases (but
_aja not restricted to these cases only).
ﬁ;é In many instances of practical applications, requiring model build-
t;;f ing, there are indications of such results being of special potential
o importance.
?:E The present paper is structured along the lines of KSh (1980) but
:E; is an initial attempt towards studying more subtle and difficult prob-
'.Q; lems of multivariate distributions. In this paper, we shall attempt
5%3 to unify, extend, generalize and simplify results scattered in the
133 literature related to structures of multivariate distributions (in
yif particular but not exclusively of a non-absolutely continuous nature),
‘.
:Eif of various definitions of hazard measures. (Unlike the univariate case
}5; there is no unique definition of this concept in the multivariate case
:;E in the literature.) Among other results, an over-compassing generali-
E;i zation of the scalar multivariate hazard measure is given and an overall
o
o
3
B o, e S T e . .
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structure as well as certain convexity properties and their implications
related to this measure are revealed. In addition, we define and inves-
tigate multivariate analogues and extensions of e.r.l. functions and
trace their relations, first to the multivariate probability distribu-
tion functions and then to the corresponding univariate concept on the
one hand, as well as to {various generalizations of) multivariate hazard
measures on the other. Following the approach adopted in KSh (1980) for
the univariate case, we do not restrict ourselves necessarily to non-
negative random variables. (The notions of the hazard measure as well
as that of the e.r.1. functions in the literature are usually limited

to the non-negative case.)

Most of the groundwork as far as the convergence and representation
theorems is concerned has been laid in KSh (1980). However, in the pre-
sent paper we clarify, using examples of specific distributions, some
ambiguities and certain inconsistencies related to the structure of
various characteristics of multivariate distributions in our search for
the most meaningful and practically attractive expressions and repre-
sentations of these distributions which would expose the hidden depen-
dencies among jointly distributed random variables. These findings could
prove to be of some significance in future developments at least in areas

such as reliability and pattern recognition.

2. A GENERALIZED MULTIVARIATE HAZARD GRADIENT AND A
MULTIVARIATE GENERALIZATION OF THE e.r.1. FUNCTION

In this section, we shall give, among other things, two theorems
that follow as direct corollaries of KSh (1980). These concern respec-

tively a generalized multivariate hazard qradient and an analogous
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multivariate generalization of the e.r.l. function.

For multivariate distributions, there exist in the literature
basically two approaches to defining hazard functions, both confined
predominantly to absolutely continuous distributions on Euclidean spaces.

The first definition, adopted and analyzed by, among others, Basu
(1971) and Puri and Rubin (1973), is a straightforward extension of the
univariate concept. (A purely discrete case was also considered by Puri
X )

IRRERR N
is defined in this case to be a real-valued function r on {x: F(x) > 0}

and Rubin (1973).) The hazard function of a random vector X = (X

with values

r(x) = f(f)/?(f),

where x = (x],...,xp) e RP, f(x) is the probability density function, and

F(x) is the survivor function given by

-~

~

F(x) = P(X > x).
(Here as well as in what follows the inequalities for vectors are to be
understood componentwise.) This concept was further discussed by Block
(1977) where additional closely related variants were proposed, and
treated in a somewhat more unified manner in Galambos and Kotz (1978).
We intend to generalize this definition and examine it in greater detail.
However, since our contribution in this case is to be rather substantial
without relying very heavily on KSh (1980), we shall deal with it sepa-
rately in the next section (i.e., Section 3 of the paper).

The second approach, due to Johnson and Kotz (1975a) and Marshall

(1975), defines a multivariate hazard gradient (in an absolutely con-

tinuous case) as the vector-valued function h on {x: F{x) > 0} with values

h(x) = (= x2—,...0m =) leg Flx)
-~ - ] p -~

-grad log F(x)

......................
................
--------------------------------------------------
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d -1 (except for a set of Lebesgue measure zero). As was shown by Marshall
;:g; (1975) in the absolutely continuous case, the vector-valued T uniquely
;‘Sé determines the probability distribution function (d.f.) or equivalently
R the survivor function. Note that each one of the components of h(x)
::Ef depends in general on all the variables xi(i =1,2,...,p). In the first
EEQE part of this section (i.e. in part a) we shall generalize the gradient
RS

’ T to the case of arbitrary d.f.'s and at the same time reduce some re-
5&; dundancy existing in the structure of the components of this gradient.
iziz The main result involving a representation given in this part subsumes
‘::; Marshall's (1975) result and is essentially a corollary of Propositions
5 and 8 of KSh (1980).

E?i In KSh (1980) - motivated by the remark contained in Shanbhag
(}'f (1970) and the results of Hamdan (1972), Kotlarski (1972), Shanbhag
;:Ef and Bhaskara Rao (1975) and Gupta (1975) - we also extended the con-
Z&Si cept of the e.r.1. function of a positive random variable to an arbi-
i)‘ trary random variable and have given a representation for a probability
122; distribution in terms of this function. Some possibilities of the
'Eézg applicability of the concept in practice have been indicated in KSh
 ';' (1980) and the references cited above. (Also, see Hall and Wellner
E:;i (1981), Hollander and Proschan (1984) and G1éhze1 et al (1984) for

Eﬁi further information and references on the e.r.1. function.) A variety

of multivariate generalizations of this function can of course be con-

.izs structed. However, we intend in this case to deal only with a certain
‘E;: construction that has features closely resembling those of the multi-
‘]f variate hazard function of the present section. The representation
‘£%E§ theorem in this latter case follows as a coroilary of KSh (1980). 1In
V;E; view of the prevailing analogy, we shall devote the second part of this




section (i.e., part b) to discussing this particular version of e.r.1.
functions and revealing some of its properties including the aformentioned
theorem. For a related but independently carried out investigation of
multivariate analogues of e.r.1. functions, the reader may wish to

consult Zahedi (1985). This work is however along different lines.

a. A generalized hazard gradient and some of its basic properties.

Let p > 2, F be a d.f. on RP and X = (X{,X,,...
_ . : S () : i
distributed according to this d.f. Let v ( 1§(i+1)) with X(i) *
(x

WX ), x(]) = x denote the hazard measure on R1 for the
conditional distribution of Xi given that Xi+1 > X, ceenk > X

,Xp) be a random vector

.i,xi+~|’... p
i+1? p="p

=i

(as stipulated in Section 4 of KSh (1980)) for every X( e RP™! and

i+1)
i=1,2,...,p-1. (We define the conditional distribution to be arbitrary
for any conditioning set of measure zero.) Also, let vép)(o) denote

the corresponding hazard measure on R] for the marginal distribution

of Xp. Extending and modifying the definition of Johnson and Kotz (1975a)
and Marshall (1975), we call the family

O b gy € 7 T2 T2 P

the hazard gradient relative to the d.f.F. We have the following theorem

which is essentially a corollary of Propositions 5 and 8 of KSh {1980)

(see, also, Cox (1972)):
THEQREM 1. The survivor function corresponding to F is represented by

{1 1 - ( ) {y }]x 1+]))‘]

F(x) = P(X>x) =
1 yiEDi(f(i))

= - i

it 2O

xexp(-vt ) (o 1 x ) )10 x € RP (2.1)

and for a continuous F the representation is
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F(x) = exp(- glvéi)((-w,x ]|x ]+]))}, X € RP, (2.2)

where the notation uép)( |x( +])) is used for convenience to denote

(p)
veP/(+)

, e is defined to be zero, Di(x(i)) is the set of real points

( ) 3 243 (C9i) |
y; < %, at which v {y }lx 1+])) is positive, and v¢ (- ,x(]+])) the
continuous (non-atomic) part of vé1) |x 1+1)). Furthermore, if F is

continuous and {Fn: n=1,2,..., } is a sequence of d.f.'s on Rp, then

using the same notation

v'(__i)((-m,x X)) » \,(Fw')((_g., xiHX(541)) (2.3)
n

for each x such that F(x) > 0 and i = 1,2,...,p if and only if {F.}

converges to F.

Proof. (2.1) and, if F is continuous, (2.2) follow immediately from

Proposition 5 of KSn (1980 in view of the relation

P(X > x) = P(X_ > x_) & POX; > xylX, g 2

s x ),
~ T p— b

P2 41 2 Xyppeee kg 2 X

x ¢ RP. (2.4)

If F is continuous, then the marginal distribution function of Xp is

continuous and for every x such that F(x) > 0 and i = 1,2,...,p-1, the

conditional distribution of X. given X, , > xH],...,Xp > xp is continuous.

Also, if X(”) = (x(n),...,x(n)) for each n > 1 is a random vector dis-

1 p
tributed according to f , then for each n > 1
n
-1 (n)
(n) - ory(n) P g (n) (n)
POCTT = x) = PIX T > xp) ; PO > x DXy > %y, o2 xp)’
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P
3'7: Applying Proposition 8 of KSh (1980) to the survivor functions on the
:zﬁ r.h.s. of (2.5), it can be easily verified that the convergence part
‘:fﬁ of the theorem is valid.
i
:‘\~ Remark 1,
1IN . .
o For absolutely continuous distributions, representation (2.2)
;ff reduces to that of Marshall (1975). Both (2.2) and (2.1) are thus
extensions of Marshall's hazard gradient representation. moreover,
Py
- the general representation for purely discrete distributions follows
{Qj: from (2.1) in the obvious manner.
o
L Remark 2,
:iii The "convergence" part of Theorem 1 fails to be valid if the
lg“; assumption of continuity of F is omitted. Examples 1-3 presented in

T KSh (1980) following Proposition 8 in Section 4 are sufficient to

A . N

QN illustrate this situation.

:f:'_'{

<>4 Remark 3,

}:ﬁ? The hazard gradient obviously has other versions when the ordering
jfg of the variables is altered. Under a specific situation, one may find

3 a particular version to be the most natural and easiest to handle. In
that case, we shall of course consider the corresponding ordering to be
the one implied in our Theorem 1. A similar remark applies to the result

of Theorem 2 below.

(o Pemark_d,

|,;;: The following cbservation related to univariate hazard measures
;)fg may be appropriate at this point. (See also the beginning of Section 4
X ?% of ¥oh (1920).) If G is a d.f. on R1, then according to representation
K"




[ 4
'y 4y “r
SRR AV AR

k)
S ." "-'.
Pt d

"
Ay ‘(v"‘-‘ _"l

N &
‘r;!!,-,.‘.“.

s
% ek

, ”
Lt v ,
DA AN
‘-’-'-

'
A" e

wWele @

e
l’t l.

P
e,

l"
9 2 Y

- ". A’“ “

:,
MAVBAAY . & v

[ ‘..
L WA o

*

.;-v e ‘,
A.(LL&"

-
-

Y |

o
L) I..
[ G W

; l.,'\. _'\. A .'v
[N

»
A

@
&

-

Wy
)

=%
g

.

A

Pemark 5,

e g ey _pv—m_ "

(4.1) in KSh (1980) either
X:eo(l-vG({xr}D =0 or Hc(m) = o,
where Vg is the hazard measure corresponding to G, D is the set of dis-
continuities of Vs and Hc(x) = véc)((-w,x]), véc) being the continuous
part of Ve Whenever the right extremity of G is not one of its dis-
continuity points, we have vG({xr}) < 1 for all X. € 0. Now the Borel
zero-one law and relation (16) given in Burrill (1972), p.245, imply
3

that x;é D(]-vG({Xr}) =0 if and only if xféove({xr}) = « provided

vG({xr}) <1, x. € D. This leads us to the relation i

G({xr}) + Hc(m) = o (2.6)

A% ((—w’m)) =
G x{eDv

whenever the right extremity of G is not one of its discontinuity
points. (This result was obtained earlier by Shanbhag (1979) using

a somewhat different argument.)

As a corollary of Theorem 1, it follows that the components of X
are independent if and only if there exists a version of the hazard

. (i)
gradient of F such that Ve |x i+1) ) is independent of X(141) for
each i = 1,2,...,p-1. The theorem also yields several other interesting

corollaries. In particular, since the theorem also implies that every

distribution on rRP is characterized by its hazard gradient, one could
obviously use it to give further characterizations of distributions,
such as the Marshall-0lkin bivariate distribution or Frechet's multi-
variate distribution with continuous marginals or a multivariate Pareto
distribution, for which the hazard gradients are of a particularly

appealing form.
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b. The generalized e.r.1. function and some relevant comments.

In view of Proposition 3 of KSh (1980), (2.4) in the proof of
Theorem 1 above implies that under some mild assumptions there exists
a representation for the survivor function of every p~component random
vector f = (X1,...,Xp) in terms of the conditional expectations

)|

.
ECh (X)X 2 xoyun X > X (x

1 Y
forms hi’ i=1,2,...,p. This is given by the following Theorem 2,

1.,...,xp) € Rp'1+] of monotone trans-

The theorem yields, among other things, that if X is a random vector
with E{X:} < » for all i = 1,2,...,p (where X: = max{O,Xi}), then the

conditional expectations E{Xi—xi[Xi > Xiyee.oX Z_XD}, i=1,2,...,p,

i
x( = (x],,,_,xp)) e RP (and hence E{X-x]X > x}, x € Rp) characterize the

- o . ~ -~

distribution of X; the representation in this Jatter case is aiso ob-

vious now. Since the family of expectations {E{Xi-xilxi > x}.,...,Xp > xD};

i=1,2,...,p, X € Rp} avoids some of the redundancies existing in the
function E{§—§|X > %}, x € RP and has all the obvious requirements of
an e.r.1. function, it would be reasonable to adopt it to be the e.r.l.

function of a multivariate probability distribution on RP.

THEOREM 2. (A representation theorem). Llet X = (X],...,Xp) be a random

vector with p components and hi’ i=1,2,...,p be real-valued non-decreasing

functions on the real line such that E(h:(xi)} <o for all i = 1,2,...,p
(where h:(xi) = max{O,hi(Xi)}). If hi' i=1,2,...,p, are such that

. > x 1 X, .
hi(xi) . E{hi(xi»]xi > X, X .,Xp > xp_ wheﬁever P\X1 > X,

. > X, .
P41 = Ti+1?

X X > xp} > 0, then the survivaor function corresponding

P 2 KX

to X is given by

PO 220 = 6lx)y  xC = (xqaeax ) e BP, (2.7)
e e e el A L T A S R S L
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. where G is the left continuous function satisfying

= %*
. 0if Xy > bj for some j > 1 & < p

)
) p g (y, ,x )
- 6(x) = 1 lim ‘g.zx (1;” i
e i=1 Yy 7 ~(i) : zeD(i)
7 YisXy

*
ffx; <b, forall j>18&c<p (2.8)

o

ey
ALIRX

LMY

i)

. . (
in which Dy ,x
(
i

Ly
[N PL Y

denotes the set of discontinuity points of hi in

e
il

i)

[yi’xi)’ hy¢ ) denotes the continuous part of h (i.e. of its right contin-

uous version), X(i) = (xi,...,xp),

- fl
P
."‘1_{1‘ l_' [ .

93 (x(5)) = B (X Xy 2 x(4)} = by,

- o PN - -

Yorg
LS Y

93 (X (141)) - (y(2) - by “'”} 5ilztxGa) )

9; (Z X(1+]))={-g (z+, x(]+])) (h.(z+) - h,(z})) (z x(1+]i) ’

-

1

e o if {y: Vim E{h.( |X > X 1.)} exists and i.hi(Y)} is empty
; by :

- - *
e and b, =

P
L] :l .\ ..

inf{y: 1lim E{hi(xi)lx(i > X )} exists and < h. ( }} otherwise
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LN (The conditional expectations are defined arbitrarily when the condi-
::Q tioning sets are of measure zero; also (2.8) and (2.9) in the statement
‘fi above are to be read without X(i41) in the case of i = p.)
b )
v Remark 6.
ey —
v:‘ In view of Theorem 3 and the information given in the Remarks in
L o Section 3 of KSh (1980), it is possible to present several extensions
]
and variants of Theorem 2 given above.
M‘__.
o Remark 7.
-’,:-
- If hi's in Theorem 2 are assumed additionally to be continuous,
- then the representation (2.7) with Gi's given by (2.8) without the term
l' *
{ o gi( ,x(i+]))} and with hgc)'s replaced by h.'s is valid.
',1 zeD(1l
( IpX;
@
o Remark 8.
o
<. If hi(i =1,2,...,p) of Theorem 2 are taken as strictly increasing,
E? the representation (2.7) for a survivor function is obviously valid in
N
j} the case of every distribution satisfying the integrability condition of
-$5 the theorem. One may be interested in seeing whether there exists a
‘fié representation for the survivor function for X in terms of the conditional
\'-- -
3};: expectations corresponding to a fewer number of functions, which are
;‘Sj appealing in some sense, at least when the domains of the definition of
hi are taken as Euclidean spaces with hi(xi) considered above replaced
by hi(X(1)), X(l) being a subvector of X. However, it is not difficult
1 - - -
‘S to see that in general merely with the integrability condition such a
xr representation does not exist, This could be verified by noting, for

example, that if hi’ i=1,2,...,p-1 are given to be real-valued Borel

O

@i
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o

o
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measurable functions on Rp, then there exist random vectors X and Y
with distinct distributions having a common support (such as {(0,...,0),
(1,0,...,0), ..., (0,...,0,1)}) such that

ECh (X [X > x} = Eth, (Y)]Y > x} for all x e RP and i = 1,2,...,p-1.

Remark 9.

Prakasa Rao (1974) has essentially attempted to solve under some
constraints the problem mentioned in Remark 8. He has given in this
context a uniqueness theorem in the bivariate case under certain assump-

tions. The following example shows that the theorem is not valid.

EXAMPLE 1., Define h to be a real-valued function on R2 such that

2
h(X,y) = (]-e_x )E(Y), X,y € R]!
where
c ify<l
(y-1)°
¢+ % ifl<y<?2
(3-y)°
E(y) = ¢+ (y-2) + 2 if2<yc<4d
3
¢+ 2+ 8 ifacy<s
c +2 ify>5,

where ¢ is a positive number. Alternatively, one could consider the h

c for ¢ # 0. Let (X,Y)

m

with a slightly more trivial situation of &
and (Z,W) be random vectors with absolutely continuous independent non-
negative components such that X and Z are identically distributed but
the distributions of Y and W are not identical. Also assume the random
vectors to be such that their marginal distributions have all left ex-
tremities to be equal to zero and

P(Y < 1) = P(W < 1), P(Yiy[YzU = P(W < ylW>1) for all y > 1,

......
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1
ki Observe that all the assumptions in Theorem 2.1 of Prakasa Rao (1974)
o are satisfied with Xy = Yy © 0. Moreover (X,Y) and (Z,W) satisfy
-
A
‘:§ Prakasa Rao's stipulation (2.0). However, in this case, the conclu-
N
phy sions of the theorem are not valid. (It is obviously possible to
i
:3, illustrate this point by other examples of a similar nature.)
' \
.\: Femark 10.
! In view of Theorem 2, characterizations based on e.r.l. functions
-
i: are now obvious for the well known distributions such as the Marshall-
" A
0y
_j: Olkin bivariate distribution, the Farlie-Gumbel-Morgenstern distri-
4
'. bution discussed in Johnson and Kotz (1975b), Gumbel's bivariate ex-
.
.. ponential distribution, the multivariate Pareto distribution and several
i: other multivariate distributions appearing in Johnson and Kotz (1972).
“»
( i One could also apply the theorem to arrive at further characterizations
9-;_ based on conditional expectations for distributions such as Frechet's

- and those discussed by Krishnaiah (1977). The following example may

serve as an illustration of this point.

.

A

t{. EXAMPLE 2. (Frechet's bivariate continuous distribution).

a5

?; Consider F to be the continuous d.f. on R2 such that the corres-
jij ponding survivor function is given by

A d

A = s 2
5 F(xqsx,) = min{1-Fy(x;), 1-Fy(x,)}, (xq.x,) € R

J,.l

? with F] and F2 as univariate d.f.'s. Clearly, since F is assumed to
T‘ii be continuous, we require F] and F2 to be continuous here also. Define
N,
:3§ ho(x.) = (F.(x)) 1, %, e RY, i=1,2
el ity it > % ’ 6o

where 0 < ay <@ and fixed. Then it follows that if X = (X],Xz) is a

! -
~$: random vector with d.f. F, we have for every x(=(xi,x2)) € R" and i = 1,2
1 ‘ -
!
g
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14
E thy (X)X > x3
1 ]+Q"
T (1-(6(x))  31-6(x)} " F B(x) <

1 if G(x) =1,

where G(x) = max{F](XT), F2(x2)}. (On the set {G(x) = 1}, one could

~ -~

also define E{hi(Xi)]X > x} differently.) Obviously, given o; and F.,

2
B (XX 2 %00 X5 2 %5), E(h,(X5)[Xy > x5): (xy,x,) = R"} character-
izes the distribution considered above among all bivariate distributions.
(This distribution has several other interesting characterization proper-
ties also, the recent characterization based on discretized Shannon en-

tropy given in Bertoluzza and Forte (1985) being one of these,.)

3. EXTENDED VERSIONS OF THE RESULTS OF BASU AND PURI
AND RUBIN DEALING WITH THE HAZARD FUNCTION

We shall now discuss a rather substantial generalization of what
is known in the literature as the "scalar" multivariate hazard function.
Let, as in the previous section, F be a d.f. on Rp, X be a p-component
random vector with this distribution and F be the corresponding survivor
function. Denote by PF the measure determined by F on (the Borel --field

Bp of) Rp. Since, in the multivariate case, we can have an F such that

Pix: F(x) = 0} > 0, (e.q., if we take F to be continuous such that

-~

PFf§(=(X],...,Xn)): Xy = -xz} = 1, we obtain PF{T: F(x) = 0} = 1),

the definition of a hazard measure in KSh (1980) is not extendable as

it stands., However, if we restrict ourselves only to the set € (say)

of distributions F for which F(+) > 0 almost surely [P the definition

el
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in KSh (1980) of a hazard measure admits an obvious extension. Suppose
then that F € € and define Ve to be the scalar hazard measure on RP

given by

v (8) J —L_4p.(x) forallBe B
p

B F(x)

(3.1)

The integral on the r.h.s. of the equation can be written following

the accepted convention in the literature as J BTN

B F(x) -
In the cas. when F is an absolutely continuous d.f. with respect

to the Lebesgue measure ¢n Rp, v. also possesses this property and thus

F
the Radon-Nikodym derivative becomes the hazard function, studied by

earlier authors, a.e. on {5: ?(5) > 0}. It follows from the investiga-
tions of Basu (1971) and Puri and Rubin (1973) (see also, Galambos and

Kotz (1978)) that the measure v,. does not in general determine uniquely

F
the distribution F. Consider then vF to be the set of d.f.'s on RP
that are members of C having the same scalar hazard measure as F. Clear-
ly the set DF defined herein is convex although not necessarily closed
relative to weak convergence,

Consider now the set of all d.f.'s on the compactified Euclid-
ean space [-m,w]p. There exists a normed linear space of which this
is a compact subset with the corresponding relative metric as a metric
of weak convergence. Then, as a further subset of this compact
set, the c1osure3F of the set P, is also compact. (For simplicity
we abuse the notation slightly here and elsewhere in this section by

denoting the set of all d.f.'s on [-m,«]p which are extensions of

members of ’F also by DF.) Since EF is also convex, Choquet's theorem

P P .
A N W L W A -L LT " RN
) ..:.\". .‘ oy k) ‘. J ‘f Y8y { W J’, &

Ot

s W



ﬁ (cf. pPhelps (1965) page 19:and also Kendall (1963)) implies that each
_ﬂj £ € Pp can be repreéented as the centroid or barycenter of a probability
measure on the Borel o-field of the 1{near space which is concentrated on the
set of extreme points of BF' In general, the problem of obtaining the
extreme points of BF or merely of Df seems to be a difficult one and

we have not as yet obtained any positive information in this connection.
However, through a theorem and two corollaries to follow, we shall

provide some valuable information concerning the problem of characteriz-

ing F on the basis of Ve This gives, among other things, the Poisson-
Martin representation for F in terms of Ve when F is continuous and a

more natural extension of the univariate hazard measure to the multi-

variate case than the hazard gradient of the last section, possessing

the uniqueness and stability requirements.

Before discussing our main results of this section, the following

instructive examples making some specific points are worth revealing.

EXAMPLE 3. Let

p
],...,xp) e R",

where F. are continuous d.f.'s on R1. Then, appealing to the result
of Puri and Rubin (1973) or our observation above concerning a repre-
sentation for the members of DF’ we can easily see that each member

*

F e DF has the following form:

* f p '\‘1. p
Fo(x) . m(1-(1-F.(x.)) "}dG(x), x € R", (3.2)
- RN LR - -

3

where G is a d.f. on RP such that the corresponding measure is concen-

CAVSK
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N
f:f 0
A% trated on the set {x: Ay o> 0, i =1,2,00.,p, 0 'y = 1}. Also, this
- i=1 \
U can be seen via the Poisson-Martin integral representation given for |
b '.; ‘
';} the members of‘DF in Corollary 1 below. Incidentally, in the present i
\,.: * |
Ko case, the extreme points of vF are given precisely by the d.f.'s F of |
]
}Q the form
:.‘ * p A i
- Fix)= 1 (0-(F(x)) '}, xe RP
';7 - i=] ~
it . . p —
with ki > 0,1 =1,2,,..,pand I Ai = 1 and any extreme point of vF
[ ‘-.' 'i =]
A is either an extreme point of DF or ad.f. on [vw,w]p which is the
;L: weak 1imit of a sequence of extreme points of vF' Looking at an arbi-
N *
trary member F given by (3.2) in the case of p > 2 for Dp, we observe
~ *
L. a curious property of vF that if F e DF and any p-1 of the p univariate
. * *
EQ marginals of F agree with those corresponding to F, then F = F. In
e
( other words, we have in this case that if a d.f. on RP has p-1 of its
s
o univariate marginals precisely the same as those corresponding to F and
\’:-
:E its scalar hazard measure on RP is defined and is given by Ves then

this d.f, has to be F. Since every univariate d.f. is uniquely determin-

*19)

o

o ed by its hazard measure, we could also restate this property using

».

ij only hazard measures. (For some recent advances connected with the re-
¥ {‘t

P sults discussed herein, see Lau and Rao (1982), Rao and Shanbhag (1986)
-

;& and Davies and Shanbhag (1987 ).)
A<
o
5 EXAMPLE 4. Let p > 2, k be a real number and S be a countable subset
fj of Rp']. Also let @ denote the set of d.f.'s on RP-! that are concentrated
L 7,
ro on S giving a positive probability mass to each point of S. For each
L.

M G e 6, let F. denote the d.f. on RP which is concentrated on

>

7 o P .

el {x: x € R, ) x; = k} with

o SN ¢ i

-

-

®

\'
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F.(x

®) = p-1
6! ERRREL R ) G(x],...,xp_]), (x1,...,xp_]) e R

{in the usual notation). It is easily seen that here v_ are all (well

F
defined and) identical. If we now consider p > 4 and any of the FG's
to be F, then it is clearly seen that the condition that F* € 0F does
not imply F* = F even if it is given that F* has all of its univariate
marginals or bivariate marginals to be the same as those of F. However,
for the F in this example, the condition that F* € DF together with
F (X],...,xp_],w) = F(x],...,xp_1,w), (x],...,xp_]) ¢ RP!
implies that F* = F. Note also that here we have the set of extreme
points of @ to be empty and the set of extreme points of 3F to be the
closure (relative to weak convergence) of the set of the degenerate
d.f.'s on [-w,w]p that are concentrated on {x: x € Rp, Exi = k}; clearly
now the situation of the last example that e;ch~F* € DF]has an integral
representation in terms of the extreme points of 0% is not valid.

In spite of certain isolated cases, such as that of Fréchet's dis-
tribution of Example 2 or of a d.f. F that satisfies for some b e RP
the conditions F(E) = 1 and F(P) = P.({b}) > 0, in which the F is char-
acterized by Vs it now follows that, in general, unless at least one of
the (p-1)-variate marginals of the distribution (or something equivalent
to it) is given, Ve does not characterize F. One might then be interested
to know whether F is characterized by vp given any one of the (p-1)-variate
marginals., Qur attempt to answer this question has been only partially
successful so far and the findings of this investigation are presented,
among other things, in the following results.

We are now ready to give our main theorem of the section together

with the two of its interesting corollaries. (The reader can find some

analogy between the proof of the theorem given here and Seneta's (1987)
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7 proof of the Poisson-Martin integral representation theorem for a super
NG regular vector corresponding to a non-negative matrix.)
\"‘:

- *

o THEOREM 3. If F ¢ t&.and, for each i = 1,2,...,p, we have (in the

' standard notation)
‘4_:

% .

- -3} = ©
.;: F (X‘li .’xi-]’ ] X.i+'|s-- ax ) F(X], :X.i_]s ’ Xi+~|9---,xp)

"-\ .l

- for all X, € R, i = 1,2,...,i-1,i+1,...,p, (3.3)
A . . . .
b then F = F. Furthermore, given an F € 0%, there exists a probability
~i$ measure u* on the set of all d.f.'s, G on [—m,w]p, such that

- * * p

- F (x)=j 6(x)du"(6), x € (=1, (3.4)
-k - -

*
where 1 (K) = 1 and K is the closure (relative weak convergence) of the

(\1 set of the d.f.'s Kt(-) for t such that F(t), F(t) > 0 (F being the sur-
:f vivor function of F as in the last section), where each of the Kt(-) is

% defined to be a d.f. on [-m,w]p such that it is the degenerate dtf. at

: tif PF({t}) = F(t) and the d.f. satisfying the following otherwise:

3 N . <

B k(x,t)

" )y e x e bt 3-5)
L‘ with

’ k('{’,P) = ;t(_y) + J f [ dvF()jn)...dvF(h), y e (-=,t].
X . n=1 ("”s}’] I.Y] »t] l.yn ]’t]
-~ At(-) being the d.f. degenerate at t. (The proof of the theorem asserts
~ N N
K that K _(-) is well defined.)
.. t

Proof. In view of Fubini's Theorem and relation PF(B) = J f(x)dvF(x)

. - B -~ ~

®

7
& ) ]
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N
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. A for every Borel subset B of Rp, we have for each t such that

- F(t) > PL({t}), n > 1,

J f .. dv _(y,)...dv_(y )

’\.) (-oo’t] (-oo y ] J(-m.yz] Fra Fin

Y ) o T

o (

S - J f dv (y ). dv (y;)

R Jiet ) Ly _qot] " Pl

i il ‘n-1°2

# -.{ ] r

"'-_;_:: :_—f J Fly )Ydv (y )...dv {y,)
o Flt (-m,t]'J yyotl Jry ety MR P

1 at J r J _

7 < Fly )dv {y )...dv(y;)
SOA = = -1 F -1 F'1
o (o) el iy '
o

g - -

’. ¥ Grtl," ] art] ]

N AR J Flydavely) = == Fo. (3.6)
e F(t) /(-=,t] ~ - F(t)

N - - - -

i
"'- where oy = F(t)/{F(t) + F(t) - PF({t})} <1, since oy > PF([y t])/Fly)
- for y < t. (3.6) establishes, among other things, that Kt(-) in the state-
-.":.“', - ) —
:’;:-j ment of the theorem is well defined. Now, for each d.f. F on RP such
-.'-:.' *
R that F ¢ OF and t as in (3.6), we have, in view of relation P ,(B) =
. E - F .

=% %
\'f:‘ J F (x)dvF(x) with B as an arbitrary Borel set and F as the survivor
e B - - )
z{:::‘: function corresponding to F |
Py
*

oo Fie) =g (t) + (-1)Pp L ((-=,t)

Iy - - F =T

o
o -5 (t) + (-1)P Fr(x)dv(x)
':-":: 0 - ("”ct) - F-
o Sy (8) + 0P P ()0
— - (=) F oo T
N

ke 4

oy

AN
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(n+1)p
= =] P P *((“”’x ))
) r oY J(-‘”,t)J(-w,X) j(-m,x -
dv(x )...dvF(x ), no> 1, (3.7)

where the sequence {Em(t): m=0,T,...}(for each given t) is such that

-~

X )

*
1
r and d.f.'s F (x1,...,x. 1929 Xs qaee b

]-
p-1
(x1,...,xi_],xi+],...,xp) € RV,

from (3.6) that the multiple integral on the r.h.s. of (3.7) tends to

it depends only on v

i = 1,...,p. It follows trivially

zero and n » =, This in turn implies that the sequence {g (t): n =1,2,.

_*x
in (3.7) converges to F (t) and hence we have that if (3.3) is valid,

then

*

F (t) = F(t) for each t such that F(t) > PF({t}). (3.8)

-~ ~ ~ ~

— %
In view of the left continuity of F and F and the fact that {x: x € Rp,

~ ~

%
F(x) = 0} = (x: x e RP, T (x) = 0}, we can conclude that if (3.8) is
~ - - . _ N *
valid, then we have F = F or equivalently F = F, This establishes the
first part of the thegrem,

To establish the second part of the theorem, define

B = (t: teRP F(t), F(t) > 0},
B, = (t: t e RP, F(t) = Pelit)) > 0},
- T It 1 =
and B = (t: teB, F(t) > Pit)) + 3, m=1,2,...

IfF e DF’ then by the monotone convergence theorem, we get

-

—
>

=
1]

F - Jf_[x,w)? (Z’)d\)F({/)
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Now, for every m> 1 and t € Bm, oy of (3.6) is bounded by m/(m+1)
and hence it follows from (3.6) that k(t,t) is bounded on B, for each
m> 1. Alsa, if we define ?(f,t) = k(},t) - k(x-,t) for each t ¢ B " Bg
and x € RP (with this to be zero if x ¢ (-=,t]). Fubini's Theorem
implies that for each m > 1 and x € rP
Kk
| FoaF e
B~ - - .

m

. JB 33(5)? (£)dv (1) + JB R(x,t)P

m m

F*(Bm(f))d“F(f)* (3.10)

-

where Bm(t) =[t,) n Bm. Observe that (3.10) follows easily from the

relations:

“ Rlxot) = 5,00 + ] j j L wlyedv ly ),
Y v -0 i [xsy 1 70xy,] P P
R |
';,.:

w .;
Qs
3
[
t

-

N

\."_‘.

o E -

o f F (E)dvF(E) PF*(Bm(Xn))’ y, €BN B, mn > 1.

L Bm(yn)
\::"1. -~
ﬁii: From (3.9) and (3.10), it consequently follows that there exists a

~ )
.fj; sequence {p : m = 1,2,...} of measures on RP such that um(Rp) <1 for
‘:23 all m and

L

‘-.\’ _* _
ooy F () = lim f Rix,thdu (1), x € R, (3.11)
A0S S -
L " I
T

which in turn implies that {um(B)} converges to 1 and hence that there
exists a sequence {um} of probability measures on RP for which (3.11) is

valid. Since K is compact, using Parthasarathy's (1967) Theorem 6.4,

NNy '
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*
it can then be easily seen that there exists a probability measure u

on K such that

0 = [ SoaTe), xe P,

Since 5F is the closure of DF’ a further application of Parthasarathy's

Theorem yjelds the validity of the second part of our theorem,

The following two corollaries of Theorem 3 are easy to prove:

COROLLARY 1, (The Poisson-Martin representation): If F is continuous,
*

then we have a d.f. F on RP to be a member of D, if and only if it has

a representation ‘

F (x) = f 6(x)du(G), x e RP,
- k”DF - -

for some probability measure u on K n DF' (In the present case, we also

have K N OF to be a Gd set of the space of all d.f,'s on [—w,m]p.)

COROLLARY 2. The hazard measure Ve jointly with the hazard measures
relative to all the univariate and multivariate marginals of F determines

F uniquely. (This corollary can be verified by induction.)

Remark 11,

It can be noted that the result of Corollary 1 does not remain valid
if the assumption that F is continuous is dropped., Also, in view of what
we have observed, it can be concluded that if F is continuous, then we
have the set of extreme points of DF to be a nonempty subset of K and

*
each F € o to be the barycenter of a probability measure that

is carried by the set of extreme points of ﬂ¥.
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~ Remark 12.

s The finite collection of hazard measures given in Corollary 2
appears, in spite of the restriction that F € C, to be a more natural
multivariate analogue of the univariate hazard measure than the hazard
gradient of the last section. A stability theorem for the collection
is valid when F is continuous, as is shown by Corollary 3 of the next

section,

4. A STABILITY THEOREM

We conclude the paper by proving and commenting in this section on
a general stability theorem for probability measures on metric spaces,
which yields, among other things, the two stability propositions in
KSh (1980) as simple corollaries. The proof of the present theorem uses

Prohorov's (1956) and related theorems in Billingsley (1968) dealing

with the convergence of probability measures. It might be instructive
to compare this with the proofs of earlier stability propositions in KSh
(1980), The techniques used for proving the theorem here are jndeed of
a more global nature than those which are sufficient in the case of
probability measures on the real lime.

Now, let S be a metric space, T an index set, § the Borel o-field
on S, P, Pi» Py Py families of probability measures on (5,S8), Ukt: t e T}
a family of collections of sets with ‘t < § for every t € T, and
{h(olt,At,P): At € At, PeP, teT)a family of real-valued Borel
measurable functions on (S,§) satisfying the following conditions in

which the notation D(t,At,P) stands for the set of discontinuity points

of h(-[t,At,P)°
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(1) P1s Pps P3P, also P, is closed (under weak convergence),

(ii) P%l), Pél), Pg‘), ves € P] and {Pﬁ]): n > 1} converges weakly

* (1)
toP &P = h(-|t,A,P ") > h-

*
t,At,P ) as n— « uniformly almost
¥* C *
surely [P ] on At no (t,At,P } and

sup Eé]){lh(~
Wi] n

(1)
taALsPy )“Atn{!h(.|t,At,Pr(\”; >} 70

%* *
as a » » for each t € T and P -continuity set At ﬂwAt with P (A, ) positive,

¢)

(iii) P§2), Péz) € P, and are distinct = there exist t ¢ T and A, ¢ A,
), Péz)(A ) are both positive, A_ is both P(Z)-continuity

t t t 1

such that Psz)(A
set and Péz)-continuity set and

E {h(e

(2) (2)
P%z) tALPT T ALY EP(Z){h(-lt,At,Pz ALY

and

(iv) P(3) € P3 = D(t,At,P(3)) has zero P(a)-measure for every t in T
and P(3)-continuity set At in At.
Further, let P e P and {P : n > 1} be a sequence of members of P,

such that {Pn: n=1,2,...} is relatively compact. Then we have the

following stability theorem:
THEQREM 4. (a) The condition that

Pe?P {Pn: n > 1} converges weakly to P (4.1)

3’

implies that

Epn{h(-lt,At,Pn)IAt};+ Eth(s

t,At,P)IAt} (4.2)

as n > = for every t € T and P-continuity set A, & At with P(At) > 0.
Moreover, (b) if additionally P, P], Psrs vv € P2 and the set of cluster

points of {Pn: n=1,2,...} (relative to weak convergence) is a subset
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of P3, then the converse assertion is valid,

Proof. Assume first that (4.1) is valid. Since P e P, it is obvious
that the set of discontinuity points of h(-|t,At,P)IAt has zero P-measure
for every t € T and P-continuity set At € At. Now, let t € T and P-
continuity set A, € A, be arbitrarily fixed, Since P € P, n> 1, the

requirements of Billingsley's (1968) Theorem 5.5 are clearly met with

h(.

t,At,P)IAt as h and h(-lt,At,Pn)IAt as hn' This theorem implies
that (Pnh;], n=1,2,...} converges weakly to Ph'l. If we now consider
Kys N> 1 and X to be some random variables having distributions Pnh;],
n > 1 and Ph'] respectively, we have {Xn: n=1,2,...} converging to X
in distribution. Also, the fact that P e P;, n > 1 implies that

{Xn: n=1,2,...} considered here is uniformly integrable. Since
Billingsley's (1968) Theorem 5.4 yields that E{Xn} + E{X} as n > « in -
such a situation, we can conclude that

Epn{h(-lt,At,Pn)IAt} -> Ep{h(-|t,At,P)IAt} as n > ®, (4,3)

In view of the assumptions that {Pn} converges weakly to P and At is a
P-continuity set, it follows that Pn(At) - P(At) as n >, If P(At) > 0,
we have (4.2) then as an obvious consequence of (4.3). Hence we have the
first part of the stability theorem to be valid,

To establish that the second part of the theorem holds, assume that
P, P], PZ’ vee € P2 and the set of cluster points of {Pn: n=1,2,...}
is a subset of P3 and also that (4.2) is valid, Since each cluster point
of {Pn: n=1,2,...} is an element of P3 and {Pn: n=1,2,...} is rela-
tively compact, we should have a subseguence {Pn :r=1,2,...} of

r
{Pn: n=1,2,...} converging weakly to Q e P3 with Q # P unless (4.1) is

v T T w W T TETETE CRWTRE R R OTRE RO T T
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*
valid, If Q denotes the (weak) limit of a subsequence of {Pn},
%*
then clearly we have Q € P3 and hence the first part of the theorem and

the validity of (4.2) lead us to

Ep{h(-]t,At,P)[At} = EQ*{h(- t,A,Q )IAt} (4.4)

% for every t € T and A € At such that A, is a P-continuity set with
'

* *
P(At) > 0 as well as a Q -continuity set with Q (At) > 0. We have assumed

hY

that P € P, and for each n > 1, P ¢ ?2 and also we have PZ to be closed.

VE In that case, we have P,Q* € P, and hence, in view of (4.4), Q* =P, It
‘: is therefore impossible that (4.1) will not be valid. Hence we have the
| i second part of the theorem.

g

. Remark 13,
( In the case of h(-]t,At,P) being independent of P, obviously the

Eé part of condition (ii) that h(e t,At,Pﬁl)) + h(- t,At,P*) uniformly

:% almost surely [P*] on Atl“ Dc(t,At,P*) for every t € T and P*-continuity
"_ set A, with P*(At) > 0 is trivially met. Also, if h(-[t,A ,P) are all

? continuous, then the condition (iv) above is obviously satisfied with

'i P, = P. IfS is a Polish space or in particular, if it is a Euclidean
;' space, we have a sequence (Pn: n=1,2,...} of members of P to be

;i relatively compacf if and only if it is tight in the sense of Billingsley
iz (1968: p.37) (cf. Theorems 6,1 and 6.2 in Billingsley (1968)). Thus, it
; is evident that in various specialized situations, the theorem given
ig above has simplified and perhaps more appealing versions,

"

i; Remark 14,

:* If the stipulation "the set of cluster points of {Pn: n=1,2,...}

is a subset of P3" is replaced by the weaker stipulation "the set of

o
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cluster points of the range of {Pn: n=1,2,...}Y is a subset of P3“,
Theorem 4 still remains valid provided we also replace "the converse

assertion is valid" by "(4.2) implies that (P in= 1,2,...) converges

weakly to P",

Remark 15.

To illustrate that the stability theorem just proved does not remain
valid if the assumptions P € P3 and the set of cluster points of
{Pn: n=1,2,...} is a subset of P3 respectively appearing in the two
parts of the theorem are omitted, it is sufficient to consider the

following example:

EXAMPLE 5. Let {x_:n =1,2,...} be a sequence of strictly increasing,
real numbers converging to a real number x'., Let x'' be a real number

greater than x'., Define P, P', {Pn: n=1,2,...} to be a sequence of

probability measures on the Borel o-field of R] such that for some
0 <ac<]

a if x = x

P ({x}) = n

1 - ifx=x"",

1 - ifx=x"",
and

P'({x}) =

<{; paldee) gl
X' =X
(X(d‘C) . - [N}
1 - a - SRR ifx=x"",

where ¢ and d are given real numbers such that ¢ < d and {a(d-c)/(x'"'-x")}
<1 - a. Also, define h on R such that
¢ if x < x'

h(x) =
d + (x-x') if x> x''.

a (¥
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[f we take T = the singleton {1}, A] [(-=,x): = @ < x < x'"

4

j“i: P = {P,P',P],PZ,...} and h{- 1,A,P*) = h(+) for every member A of A,
f:;; and P* € P, then it follows that P itself satisfies the requirement
T:f of P, and P, mentioned above. However, in this case we cannot have
':ﬁ- a nonempty subset P, of P satisfying the condition (iv) as required.
LEE Consequently, it follows that in this example neither the requirement
o of P e P3 nor the requirement of the set of cluster points of

- {P:n=1,2,...} being a subset of P, is met. Observe that here

3

{P :n=1,2,...} converges to P weakly, P # P' and (4.2) is not valid
" (since E
® P
N (4.2) with P replaced by P' is valid. This implies that with the de-

{h(+)]|A} # Ep{h(-)|A} whenever A = (-=,x) with x < x') but

letions mentioned above neither the first part of the theorem nor the

second part remains valid.

g Theorem 4 has several interesting corollaries. In particular it
i:: yields that if a characteristic property exists, based on conditional
13 expectations of the type Ep{h(- t)IAt} for probability measures P within
:jﬂ- a certain class, then, under certain mild conditions, one can produce

a stability version of the property. It is easily seen that Proposi-
-y tion 4 of KSh (1980) is an obvious corollary of Theorem 4 and also it
;?i is not difficult now to state a stability version of our Theorem 2 of
’:a Section 2 based on Theorem 4, (Note that in view of what was revealed
in Remark 13, the statement of Theorem 4 simplifies under the situation

‘f: in Theorem 2.) It is also worth pointing out in this place that {in view
s

M of Proposition 5 of KSh (1980)) the "only if" part of Proposition 8 of

) !

o
U KSh (1980) follows as a corollary of the first part of Theorem 4 by

o

!

.

o
o

( I

-.Q.
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. 1
letting S = R, T = (-=,b), At = {R]} for every t € (-=,b), P =P, = the

set of measures in the sequence

{p :n Z_O, FO = F}’ (P2=)P3 = {pF}

n

F

*
and for each t in T and P in P

*

(p ([x,m))’11(_m’t] i p (Ix,)) > 0
h(x|t,A,P7) =

0 otherwise;

moreover, if some simple initial observations are made and P, ?1, Pé
and Fg are appropriately redefined, the "if" part of Proposition 8 of
KSh {1980) follows from the second part of Theorem 4. Essentially the
same argument leads to the following stability version of the charac-

terization result in our Corollary 2 of Section 3. This result clearly

subsumes Proposition 8 of KSh (1980).

COROLLARY 3. Llet p > 1 and {Fn: n=1,2,...} be a sequence of d.f.'s
on RP and F be a continuous d.f. on Rp. Assume that F and for each n,
Fn are members of the set € defined in the last section. Then

Fn(x) + F(x) for all x e RP

-~

if and only if
* * —_
Ve (x) = BF(ﬁ) for all x with F(x) > 0,
n ~ ~
*
where the notation YG(g) stands for the vector whose elements (given

G((-co,x]) and its counterparts relative

to all the univariate and multivariate marginals of G, with appropriate

in some specified order) are v

subvectors in place of x and appropriate number of components in =,

and F stands for the survivor function corresponding to F as in the

earlier sections.
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